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Abstract: Limiting ionic conductance (Λ0) of rigid symmetrical unipositive ions in aqueous solution shows a strong
temperature dependence. For example,Λ0 more than doubles when the temperature is increased from 283 to 318
K. A marked variation also occurs when the solvent is changed from ordinary water (H2O) to heavy water (D2O).
In addition,Λ0 shows a nonmonotonic size dependence with a skewed maximum near Cs+. Although these important
results have been known for a long time, no satisfactory theoretical explanation exists for these results. In this
article we present a simple molecular theory which provides a nearly quantitative explanation in terms of microscopic
structure and dynamics of the solvent. A notable feature of this theory is that it does not invoke any nonquantifiable
models involvingsolVent-bergor clatherates. We find the strong temperature dependence ofΛ0 to arise from a
rather large number of microscopic factors, each providing a small but nontrivial contribution, but all acting surprisingly
in the same direction. This work, we believe, provides, for the first time, a satisfactory explanation of both the
anomalous size and temperature dependencies ofΛ0 of unipositive ions in molecular terms. The marked change in
Λ0 as the solvent is changed from H2O to D2O is found to arise partly from a change in the dielectric relaxation and
partly from a change in the effective interaction of the ion with the solvent.

I. Introduction

Limiting ionic conductance (Λ0) of small rigid symmetrical
ions in common dipolar solvents is an important entity of the
liquid phase chemistry.1-7 Despite its importance, our under-
standing of the factors that determineΛ0 is still poor. The
complexity of the problem drew the attention of great scientists
like Born, Debye, and Onsager, but even then many of the basic
aspects of the problem are not yet well-understood. The reason
for the lack of progress is many fold. Not only are the
interactions involved long-ranged but also the structure and the
dynamics of the solvents involved are complex and werehitherto
largely unknown. For example, it has been discovered only
recently that water, acetonitrile, and methanolsall possess an
ultrafast polar solvent response in 50-100 fs time scale.8,9

Clearly, this ultrafast response will have an important effect on
ionic conductance as well.
In this article, we are concerned with the limiting ionic

conductance (Λ0) in aqueous solution only. The value of the
limiting ionic conductance,Λ0, is determined by the interaction
between the ion and the solvent molecules and the relative
dynamics of the solute-solvent system.Λ0 itself shows several
interesting, even anomalous, behaviors which are nontrivial to
explain. In the following we list some of these.
1. The limiting ionic conductance,Λ0, shows a maximum

when plotted against the inverse of the crystallographic ionic
radius,r ion

-1. This particular feature is shown in Figure 1 which
also depicts the complete breakdown of Stokes’ law for small
ions like Li+ and Na+.
2. Λ0 shows a strong temperature dependence. For monova-

lent simple ions (for example, tetraalkylammonium ions and
alkali metal ions), the temperature coefficient ofΛ0 is almost
2% per degree2.
3. Λ0 exhibits a significant solvent isotope effect. Experi-

mental results reveal thatΛ0 of a particular ion in D2O is 20%
less than that in H2O. This reduction of mobility is universal
for all monopositive ions irrespective of their size.
None of the above results can be explained in terms of the

Stokes-Einstein relation which relates the diffusion coefficient
(or the conductivity) of the ion to the viscosity (η0) of the
medium. Traditionally, there have been two general approaches
to rationalize the breakdown of Stokes’ law. The phenomeno-
logical solvent-berg model2 assumes the formation of a rigid
solvent cage around a small ion which leads to an increase of
the effective radius of the ion. This, in turn, leads to a sharp
decrease of the conductivity (see Figure 1). In addition, the
maximum in Λ0 near Cs+ is explained in terms of the
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orientationalstructure breakingof the solvent by the ion.10

However, this approach fails completely to provide a coherent
quantitative description ofΛ0. The second approach was
initiated by Born11who suggested that because of the increased
dissipation of momentum due to the long range ion-solvent
interactions, the ion experiences an additional friction over and
above the prediction of Stokes’ law. The friction acting on the
moving ion can, therefore, be written as a sum of two
contributions

whereúbare is the friction due to short range nonpolar interac-
tions, whereasúDF is the dielectric friction originating from the
long-range polar interactions. Conventionally,úbare is ap-
proximated by the Stokes’ relation with a proper boundary
condition. The main emphasis of this approach is the calculation
of the dielectric friction,úDF. This is, of course, nontrivial.
Initially, úDF was obtained by continuum models, but more
recently a microscopic approach has been initiated.12,13 In the
following we first briefly describe the main results of the
continuum models.
The first consistent electrohydrodynamic calculation of

dielectric friction was presented by Zwanzig.14 It leads to a
simple expression forúDF in terms of the static dielectric constant
(ε0) and the Debye relaxation time (τD). The resulting expres-
sion can explain the nonmonotonic size dependence ofΛ0 but

overestimates the dielectric friction by a factor of 3-5 for small
ions like Na+ and Li+. This is shown in Figure 1. In a different
continuum approach,15,16Hubbard and Onsager (H-O) derived
an expression for the total friction acting on the ion by
generalizing the Navier-Stokes equations for hydrodynamic
flow to include the polarization relaxation of the solvent in the
vicinity of the moving ion. The resulting hydrodynamic
equations were then solved with the constraint of invariance of
the energy dissipation with respect to rigid body kinematic
transformation (rotation and translation). The Hubbard-On-
sager continuum electrohydrodynamic approach constitutes a
beautiful treatment of macrodynamics, and it predicts the
mobility of large ions correctly. However, it severely under-
estimates the value ofúDF and thus fails to provide a quantitative
description of the ion transport mechanism. This is also shown
in Figure 1.
In a complete breakaway from the continuum models,

Wolynes proposed a theory to obtain the dielectric friction,úDF,
from the force-force time correlation functionsthe force on
the ion was obtained from microscopic quantities, such as the
radial distribution function.12 The theory was found to be rather
successful in describing many aspects of the ionic mobilities in
water and acetonitrile.12c Several limitations of this approach
were removed in a subseqeunt theory which pays proper
attention to the various static and dynamic aspects of the ion-
solvent composite system.17,18 A notable feature of the extended
theory is the self-consistent treatment of the self-motion of the
ion and the biphasic polar solvent response. The results were
found to be in satisfactory agreement with all the known results
not only for water and acetonitrile17 but also for monohydroxy
alcohols.18 Most notably, the nonmonotonic dependence ofΛ0

on r ion
-1 was correctly reproduced for all these solvents. How-

ever, no theoretical studies on temperature dependence or solvent
isotope effect on limiting ionic conductivity has been carried
out. As already mentioned, the recently discovered ultrafast
component in solvation dynamics is expected to play an
important role in determining the solvent isotope effect and the
temperature and pressure dependencies ofΛ0.
Nevertheless, the strong temperature dependence ofΛ0 in

water is certainly paradoxical. On increasing the temperature
from 283 to 318 K, the density of water decreases by only about
1%, the static dielectric constant by about 15%, and the Debye
relaxation timeτD and the solvent viscosity both by about 50%.19

On the other hand,Λ0 for Li+ increases by 120%, from 26.37
at 283 K to 58.02 at 318 K. The same trend of increase is
observed not only for Cs+, Na+, and Li+ but also for the
relatively large tetraalkylammonium ions.10 As this large change
cannot be easily accounted for within the existing continuum
model theories, explanations were offered in the past by
invoking the partial breakdown of the hydrogen bonded network
at high temperatures and formation of solvent-berg at low
temperatures.10 Not only that such pictures are difficult (if not
impossible) to quantify, but there is no experimental evidence
of significant structural change between, for example, 283 and
298 K whereΛ0 changes by about 50%. Thus, explanation of
the temperature coefficient ofΛ0 has remained largely unsolved.
In contrast to the temperature dependence, the solvent isotope

effect on limiting ionic conductivity is less anomalous.10 For
Na+, the change inΛ0 is about 20% when the solvent is changed
from H2O to D2O. This is comparable to the viscosity change
of the liquid and, in principle, could be explained by
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Figure 1. The values of theLimiting ionic conductiVity (Λ0) of rigid,
monopositive ions in water (H2O) at 298 K are plotted as a function of
the inverse of the crystallographic ionic radius,r ion

-1. The experimental
results are denoted by the solid circles. The solid line represents the
predictions of the Stokes’ law, the large-dashed line the Hubbard-
Onsager theory, and the small dashed line the theory of Zwanzig (with
slip boundary condition). Note that the Stokes’ law is valid for
tetraalkylammonium ionsC1-C4 whereCn ) (CnH2n+1)4N+, n being
1, 2, 3 or 4.

ú ) úbare+ úDF (1)
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hydrodynamicssvia the continuum modelssexcept that they
all give a completely wrong magnitude ofΛ0.
The molecular theory presented here describes the ion

transport in terms of the ion-solvent interaction, the solute-
modified solvent-structure around the ion, the orientational
solvent static correlations, and the inherent dynamics of the
medium. The effect of the motion of the ion on its own
conductivity has also been taken into account through a self-
consistent calculation. The present microscopic theory is shown
to provide a good description for both the temperature depen-
dence ofΛ0 and the solvent isotope effects on limiting ionic
conductivity. The strong temperature dependence is seen to
arise from a collection of several small microscopic effects, all
acting in the same direction in a concerted fashion. These
effects include a change in the ion-dipole direct pair correlation
function and in the dynamics of the solvent. The theory also
provides a fairly satisfactory description of the solvent isotope
effect.
The organization of the rest of the paper is as follows. In

the next section we briefly describe the molecular theory. In
section III we present the calculational details of the ion-dipole
direct correlation function. The same for the other necessary
quantities is given in the Appendix II. We present numerical
results of the temperature dependence of the limiting ionic
conductivity in the section IV. Section V contains the results
on the solvent isotope effect. We conclude the paper with a
brief discussion in section VI.

II. The Molecular Theory

The microscopic theory presented here is based on the
following simple picture. As an ion moves in the liquid, it
experiences fluctuating forces from two different sources. First,
there is the usual force from the short range, primarily repulsive,
non-polar interaction with the surrounding solvent molecules.
The friction originating from this part, as already mentioned, is
termed as bare friction (úbare). This is calculated from the
solvent viscosity (η0) and the crystallographic radius of the ion,
(r ion) by using the Stokes’ law as followsúbare) 4πη0r ion. This
is clearly an approximation since the hydrodynamics cannot be
valid for a ion which is smaller in size than the solvent.
However, for small ionsúbare is generally much smaller than
úDF, and, therefore, the error made is not significant.12 The
second part of the fluctuating force originates from the long-
range ion-dipole interaction. This gives rise to the dielectric
friction, úDF. We neglect the cross correlations among the short
range, repulsive and long range attractive ion-dipole interactions.
This is also an approximation first proposed by Wolynes12 and
used extensively in their subsequent works.12 Due to the long
range nature of the ion-dipole interaction, this polar force can
be obtained from the well-known time dependent density
functional theory.12,13 The latter provides an expression of the
effective potential on the ion in terms of the fluctuating space
and orientation dependent densitysthis expression is given in
the Appendix I. The force due to the polar interaction is
obtained from this potential. It should be stressed here that the
present approach has been enormously successful in many areas
of liquid state dynamics,20-22 and is an effective way to treat
the dynamics of a strongly correlated system like the present
one.

The dielectric friction,úDF, is now calculated from the force-
force time correlation function using Kirkwood’s formula23

which in the present case is given by

whereFid(t) is the force acting on the ion due to the ion-dipole
interaction only. As usual,kB is the Boltzmann constant andT
is the temperature in degree Kelvin.〈....〉 stands for the
ensemble averaging. The final expression forúDF is given by17

where cid
10(k) is the Fourier transform of the longitudinal

component of the static ion-dipole direct correlation function.
Ssolvent
10 (k,t) is the longitudinal component of theorientational
dynamic structure factor of the pure solvent withk as the wave-
vector conjugate to the distance vectorr . While cid(k) describes
the effective interaction between the ion and the dipolar solvent
molecules,Ssolvent

10 (k,t) describes the pure solvent dynamics. In
defining these correlation functions, the wavenumberk is taken
parallel to thez axis. F0 is the average number density of the
solvent. Sion(k,t) denotes the self dynamic structure factor of
the ion. Thez ) 0 limit of eq 3 provides the macroscopic
friction. The details are available in refs 17 and 18sa brief
summary of derivation of eq 3 is given in the Appendix I for
the sake of completion.
Equation 3 is a nonlinear, microscopic expression for the

dielectric friction. It is nonlinear since it involvesúDF(z) on
both the sides. Thus, it has to be solved self-consistently. This
equation has an interesting structure as it couples single particle
motion (Sion(k,t)) to the collective dynamics of the solvent
(Ssolvent(k,t)) via the ion-dipole direct correlation function (cid-
(k)). To obtainúDF (t úDF(z) 0)) from eq 3, we need to specify
bothSsolvent

10 (k,t) andSion(k,t). The latter is assumed to be given
by

where the diffusion coefficient of the ion,DT
ion, itself is

determined by the total frictionú. As the motion of the ion
occurs on a time scale larger than the dynamics of the dipolar
solvent, eq 4 is sufficient for most purposes.
The determination of the orientational solvent dynamic

structure factor is rather complex. It is determined by the static
orientational structure, the frequency dependent dielectric func-
tion ε(z), and the translational and rotational diffusion coef-
ficients, among others, of the dipolar liquid (here ordinary water
and heavy water). The solvent static parameters and the
dielectric relaxation data for both the liquids are summarized
in Tables 1-3. The details of the methodology are available
elsewhere,9,17,18 and we give a brief discussion on it in the
Appendix II. Finally note that the expression for the dielectric

(20) Kirkpatrick, T. R.; Wolynes, P. G.Phys. ReV. A 1987, 35, 3072.
(21) Kirkpatrick, T. R.Phys. ReV. A 1985, 32, 3130. Kirkpatrick, T.
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Table 1. Solvent Static Parameters at Three Different
Temperatures

solvent temp (K) diameter (Å) µ (D) F (gm/cc) η0 (cp)

H2O 283 2.8 1.850 0.9997 1.3070
H2O 298 2.8 1.850 0.9970 0.8904
H2O 318 2.8 1.850 0.9902 0.5960
D2O 298 2.8 1.855 1.1045 1.0970

úDF ) 1
3kBT
∫0∞dt 〈Fid(0)‚Fid(t)〉 (2)

úDF(z) )
2kBTF0
3(2π)2
∫0∞dte-zt∫0∞dkk4|cid10(k)|2 Sion(k,t) Ssolvent10 (k,t) (3)

Sion(k,t) ) exp[-DT
ionk2t] (4)
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friction (eq 3) has essentially the same structure as the solvation
energy time correlation function (S(t)) except that the former
(eq 3) has aquarticwavenumber (k) dependence, while that of
the latter has aquadratic kdependence. Thus, the present theory
can be considered as a dynamic solvent berg model.18

III. Determination of the Intermolecular Coupling
between the Solute Ion and the Dipolar Solvent
Molecules,cid(k)

In this section, we describe the calculation of the wavenumber
(k) dependent ion-dipole direct correlation function,cid(k), which
describes the coupling of the solute ion with the distorted solvent
structure around the ion.

We obtain the ion-dipole direct correlation function,cid(k),
by Fourier transforming the expression of microscopic polariza-
tion (Pmic(r)) given by Chan et al.24 An interesting aspect of
this expression is that it predicts a region of negative values of
Pmic(r) which indicates the alignment of the solvent dipole just
outside the first solvation shell in a direction opposite to that
of those as the nearest neighbors.24 The expression for the ratio
of the microscopic polarization,Pmic(r) to the macroscopic
polarization,Pmac(r) is given as follows24

where F(r) is a dimensionless quantity and appears as a
correction factor to the macroscopic polarizationsthe latter is
given by the following expression24

wheree denotes the electronic charge andz the valency of the
ion. We have calculatedPmic(r)/Pmac(r) using the two mutually
exclusive conditions given in the paper by Chan et al.24 In
Figure 2 we show the calculated variation of the polarization
ratio with r (scaled by solvent diameter) in water for solute-
solvent size ratio, 1. It is clear from the above figure (Figure
2) that the polarization density around an ion is oscillatory in
nature which is maximum at the contact. This is in contrast to
the dielectric saturation theory which predicts a divergence in
the local static dielectric constant and thus in the local
polarization near the ion.

IV. Numerical Results for Λ0 in Water: Temperature
Dependence

In this section we present the numerical results on the
temperature dependent limiting ionic conductivity,Λ0. We
calculateΛ0 by using the following well-knownNernst-
Einsteinrelation

whereF is the amount of electricity transported by one gram-
equivalent of the conducting ion, andR is the universal gas
constant. DT

ion is the translational diffusion coefficient of the
ion and is calculated from the Einstein relation

where the total frictionú is evaluated from eq 1. Note that no
adjustable parameter is used at any stage of the calculation.
The calculated limiting ionic conductivity at 283 K is shown

in Figure 3 whereΛ0 is plotted as a function of the inverse of
the crystallographic ionic radius,r ion

-1. The available experi-
mental results10 are also shown in the same figure (Figure 3).
The comparison clearly indicates a fair agreement between the
theoretical predictions and the experimental results. In par-
ticular, the nonmonotonic size dependence is correctly repro-
duced by the present molecular theory. This is indeed satis-
factory if one considers the complex nature of the solvent and
the approximations involved. There are, however, still some
minor discrepancies. The theory predicts a peak value forΛ0

which is smaller than the experimental value by about 10%.
Moreover, the theory predicts a shift in the peak position where
the theoretical peak inΛ0 corresponds toK+, while that in the
experiment is for Cs+. For Li+, the calculatedΛ0 is about 15%
greater than that of the experimental results.
In Figure 4 we present the calculated limiting ionic conduc-

tivity, for water at 298 K. The relevant experimental results10

are again shown in the same figure (Figure 4). The agreement
here is excellent. In Figure 5 we compare the theoretical
predictions on limiting ionic conductivity with those from the
experiments by plottingΛ0 againstr ion

-1 at 318 K. The relevant
experimental results10 are also shown in the same figure (Figure
5). Note that the theory predicts the peak value ofΛ0 quite
successfully but again fails to describe the experimental results
for Na+ and Li+ quantitatively.
The fair agreement between the theoretical predictions and

the experimental results indicates that the present theory can
capture essentially all the static and dynamic aspects of the
solute-solvent system correctly at different temperatures. We

(24) Chan, D. Y. C.; Mitchel, D. J.; Ninham, B. W.J.Chem. Phys. 1979,
70, 2946.

Table 2

(a) The Dielectric Relaxation Parameters of H2Oa

T (K) ε1 τ1 (ps) ε2 τ2 (ps) ε3

283 83.83 12.145 6.18 1.498 4.49
298 78.3 8.32 6.18 1.02 4.49
318 71.51 5.538 6.18 0.683 4.49

(b) Frequency and Dielectric Constants for the High
Frequency Librational Modesb

n1
2 Ω1 (cm-1) n2

2 Ω2 (cm-1) n3
2 Ω3 (cm-1) n4

2

4.49 69.3 4.2 193 2.1 685 1.77

a These data are well compiled in ref 9c. [ε1 ) ε0, the static dielectric
constant of the solvent;ε3 ) ε∞, the infinite frequency dielectric constant
obtained by fitting the low frequency relaxation to a sum of two Debye
dispersions].bWe have used the same high frequency dielectric
dispersion data and low frequency dispersions for all the three different
temperatures except the temperature dependentε0.

Table 3

(a) Dielectric Relaxation Parameters of D2Oa

solvent ε1 τ1 (ps) ε2

D2O 78.3 10.37 4.8

(b) Frequency and Dielectric Constants for the High
Frequency Librational Modes

solvent n1
2 Ω1 (cm-1) n2

2 Ω2 (cm-1) n3
2 Ω3 (cm-1) n4

2

D2O 4.8 64.0 4.2 184 2.1 505 1.77

a These data are also well compiled in ref 9c.b n1
2 ) ε∞, n4

2 ) n2, the
optical dielectric constant of the solvent.

Pmic(r)

Pmac(r)
) 1- r × dF(r)

dr
+ F(r) (5)

Pmac(r) )
(ε0 - 1)ze

4πε0r
2

(6)

Λ0 )
z2F2DT

ion

RT
(7)

DT
ion )

kBT

ú
(8)

Ionic Conductance of Ions in Aqueous Solutions J. Am. Chem. Soc., Vol. 119, No. 25, 19975949



would like to emphasize again that this agreement has been
achieved without the use of any adjustable parameter.
The reasons for the remaining discrepancies are not clear. It

is likely that the MSA model used to obtain the static pair
correlations does not describe the real solvent accurately.
Another reason may be the use of the dielectric relaxation data
which at 283 and at 318 K were obtained from those at 298 K
by scaling the relaxation times linearly with the viscosity. Any
slight incompatibility in these data will be magnified in the
calculation ofΛ0. This is more so for the relatively small ions
because the small ion couples with the dynamic response of
the solvent more strongly compared to the larger ions.
Let us now comment on the physical origin of the strong

temperature dependence ofΛ0. The present theory takes into
account the temperature effect through various molecular

parameters, each contributing a small effect with the change in
the temperature. These effects act in a concerted fashion to a
single directionseither to decrease or increase the limiting ionic
conductivity depending upon the direction in which the tem-
perature is changed. For example, the increase in the temper-
ature from 283 to 318 K gives a∼10% reduction in the polarity
(3Y) parameter. This translates into the similar reduction in
the orientational static correlations and ion-dipole direct cor-
relation functions. The viscosity of the solvent also reduced
by ∼50%. This reduction in the solvent viscosity changesΛ0

in two waysschanging both the bare friction and the dielectric
friction. The reduced viscosity also decreases the Debye
relaxation times which have been used to evaluate the dynamic
solvent structure factor,Ssolvent

10 (k,z) through the calculation of
∑(k,z). In order to understand the dynamics of solvent response,

Figure 2. The ratio of the solvent microscopic polarization to the
macroscopic polarization,Pmic(r)/Pmac(r) is plotted as a function ofr,
for water (H2O) at 298 K. The solute-solvent size ratio is 1. Note
that r is scaled by the solvent diameter,σ.

Figure 3. The values of thelimiting ionic conductiVity (Λ0) of rigid,
monopositive ions are plotted as a function of the inverse ionic radius,
r ion

-1 in water (H2O) at 283 K. The solid line represents the predictions
of the present microscopic theory. The solid circles denote the
experimental results.

Figure 4. The values of thelimiting ionic conductiVity (Λ0) are plotted
as a function of the inverse crystallographic ionic radius,r ion

-1, in water
(H2O) at 298 K. The representations remain the same as Figure 3.

Figure 5. The values of thelimiting ionic conductiVity (Λ0) of rigid,
monopositive ions are plotted as a function of the inverse crystal-
lographic ionic radius in water (H2O) at 318 K. The solid line represents
the predictions of the present theory, and the solid circles denote the
experimental results.
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we plot in Figure 6 the calculated dynamic solvent structure
factor (normalized),Ssolvent

10 (k,t), for two different temperatures.
NoteSsolvent

10 (k,t) is obtained by numerically Laplace inverting
Ssolvent
10 (k,z), and we show the results for intermediate wave-
number only. It is clear from the above figure that the response
function at high temperature decays more rapidly than that at
the low temperature. This, in turn, produces less dielectric
friction at the high temperature.
It is interesting to see how so many changes act in the same

direction. Thus, we are in a position now to understand the
anomalous temperature coefficient of the limiting ionic con-
ductance in aqueous electrolyte solutions.

V. Numerical Results for Λ0 in Heavy Water D2O:
Solvent Isotope Effect

Here we present the theoretical results on ionic conductivity
in heavy water (D2O) at 298 K. The necessary static parameters
and dielectric relaxation data needed for the calculation ofΛ0

in D2O are given in Tables 1 and 3.
The calculated results for the limiting ionic conductivity,Λ0,

in heavy water (D2O) at 298 K are shown in Figure 7. The
available experimental results10 for D2O are also shown in the
same figure (Figure 7). The theoretical results are seen to be
again in good agreement with those from the experimental ones.
Note that the theory can successfully predict the peak value of
Λ0 in D2O. The experimental observation that the solvent
isotope effect reduces the mobility by about 20% is correctly
reproduced here.
In view of the present isotope effect, it is interesting to recall

the significant isotope effect observed in electron mobility.25

The latter is, of course, a more difficult problem as a fully
quantum mechanical treatment is required to understand the
nature of the solvent isotope effect on electron mobility.25

VI. Conclusion

Let us first summarize the main results of this paper. We
have presented a microscopic calculation which explains the
anomalous temperature dependence of the limiting conductivity
of unipositive ions in aqueous solutions. The strong temperature
dependence is shown to arise from a collection of small effects
all acting in the same direction. Thus, one need not invoke
any unquantifiable physical concepts like the formation or
breaking of solvent-berg to explain the experimental results.
The theory can also explain the significant solvent isotope effect
which has been known for a long time but was nothitherto
explained quantitatively. The nonmonotonic size dependence
of limiting ionic conductivity at various temperature has also
been correctly described in terms of the dielectric friction.
An important aspect of the present study is the systematic

incorporation of the ultrafast polar solvent response in calculat-
ing the ionic mobilities at all temperatures reported here. In a
microscopic theory ofpolar solvation dynamics developed
earlier9 it has been shown that in the theory the ultrafast polar
solvent response comes entirely from the dynamic response
function Σ(k,z) which is determined in turn by the fast
components dielectric dispersion of the pure solvent. We use
the same∑(k,z) in the present theory to calculate the limiting
ionic conductivities of various monopositive ions. An interest-
ing prediction is that if we incorporate only the largest Debye
relaxation time, then we find about 100% reduction of the value
of the limiting ionic conductivity obtained using the full
dielectric relaxation data of the solvent.18

It is important to note that at room temperature the experi-
mental results on limiting ionic conductivities of uninegative
halide ions constitute a curve with a maximum which is different
from that of the cations when plotted as a function of the
crystallographic ionic radius. This indicates that the interaction
between a solvent molecule and an anion is different and
asymmetric from that of the cation-solvent system. Recent

(25) Schwartz, B. J.; Rossky, P. J.J. Chem. Phys. 1996, 105, 6997.
(26) Raineri, F. O.; Resat, H.; Friedman, H. L.J. Chem. Phys. 1992, 96,

3058.
(27) Lee, S. H.; Rasaiah, J. C.J. Chem. Phys. 1994, 101, 6964. J. Phys.

Chem. 1996, 100, 1420.

Figure 6. The rate of the decay of the orientational, dynamic solvent
structure factor,Ssolvent

10 (kσ,t/τ) as a function of time,t, for water at two
different temperatures. The solid and the dashed lines represent the
decay ofSsolvent

10 (k,t) at 318 and 283 K, respectively. Note that the
numerical results obtained withkσ ) 6.3 whereσ is the diameter of a
water molecule. The wavenumber (k) and the time (t) are scaled by
the solvent diameter (σ) and the timeτ, respectively. The parameters
used for this calculation are given in Tables 1 and 2.τ ) 1× 10-12 s.

Figure 7. The effect of isotopic substitution in solvent on limiting
ionic conductivity in electrolyte solution. The values of the limiting
ionic conductivity,Λ0 are plotted as a function of the inverse of the
crystallographic ionic radius inheaVy water (D2O) at 298 K. The
prediction of the present molecular theory is represented by the solid
line while those from experiments are shown by the solid circles.
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computer simulation studies by Lee and Rasaiah27 (with
improved interaction potential) have quantitatively reproduced
the above experimental trend. The present theory, however,
cannot explain the distinct maximum observed for the halide
ions. This is because the present theory uses the ion-solvent
direct correlation functions obtained from the MSAmodel which
is insensitiVe to the sign of the charge. The present theory, in
principle, can be extended to explain the differences by using
the proper charge representation of the solvent molecules. That
is, one needs to abandon the point dipole representation of the
solvent molecules. While this is certainly worthwhile, the
procedure would involve extensive numerical work.
The theory presented here is based on a simple idea, although

its implementation requires the consideration of a rather large
number of factors. One needs not only a detailed knowledge
of the ion-dipole and dipole-dipole pair correlation functions
of the solution but also a detailed description of the dielectric
dispersion of the pure solvent. Even after these are obtained,
one needs to calculate the rotational and the translational
generalized frictions which are both frequency and wavenumber
dependent. However, all the functions involved are well-
behaved, and the self-consistent calculation ofúDF is straight-
forward. In fact, given the complexity of the problem, it is
difficult to imagine that a simpler theory than the present one
can be successful.
We now comment on the validity of the separation of the

total friction into two partssnamely, the bare friction (ú0) and
the dielectric friction (úDF). This separation may not be a serious
approximation. It has been discussed earlier13 that so long as
the bare (nonpolar) part contains only the isotropic part of the
interaction potential between the ion and the solvent dipoles,
such a separation is internally consistent within the linearized
equilibrium theory of liquids. This has also been observed in
the simulation studies of Berkowitz and Wan.28 However, this
separation becomes questionable if nonlinear effects are im-
portant, as discussed in ref 13.
The theory presented here can be extended to understand the

concentration dependence of ionic conductivity in electrolytes
of rigid ions like NaCl. Work in this direction is under progress.
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Appendix I

The force which is responsible for the dielectric friction is
long range in nature since it originates from the coupling of
the ionic field to the solvent polarization mode. The density
functional theory provides the following expression for the force
density on the ion

wherenion(r ,t) is the number density of the ion,δF(r ,Ω,t) is
the fluctuation in the position (r ), orientation (Ω), and time (t)
dependent number density (F0) of the dipolar solvent, andcid-
(r ,r ′,Ω) is the ion-dipole direct pair correlation function (DCF).
3 is the spatial gradient operator. Next, the density and the
direct correlation function are expanded in the spherical
harmonics. We then use the standard Gaussian decoupling
approximation to obtain the microscopic expression for the
frequency dependent dielectric friction,úDF as given in eq 3.
The same expression for the dielectric friction (eq 3) can also

be obtained from the mode coupling theory (MCT) which does
not invoke Kirkwood’s formula at any stage.29,30 Thus, exactly
the same expression for friction can be derived by using these
two alternate routes. Our understanding is that so long as one
is calculating the friction, a properly defined random force gives
the correct result.

Appendix II
The orientational solvent dynamic structure factor,Ssolvent

10

(k,t) has the following form

where £-1 stands for Laplace inversion. 3Y is the polarity
parameter of the solvent and can be calculated from dipole-
momentµ andF0 of the solvent using the following relation 3Y
) (4π/3kBT)µ2F0. N represents the total number of solvent
molecules present in the system.εL(k) is the longitudinal (110)
component of the wavenumber (k) dependent dielectric function.
This is calculated from MSA corrected both atk f ∞ andk f
0 limits by using the XRISM results of Raineri, Resat, and
Friedman.26 ∑(k,z) is the dynamic response function of the
solvent which is a measure of the rate of orientational solvent
polarization density relaxation and can be evaluated using the
following expression

wherem, σ, and I characterize the mass, diameter, and the
average moment of inertia of each solvent molecule, respec-
tively. c(110;k) is the (110) component of the two particle direct
correlation function of the solvent in the wave-vector (k) space.
ΓR(k,z) and ΓT(k,z) are the rotational and the translational
dissipative kernels, respectively, of the solvent. The calculation
of the dynamic response function,∑(k,z) is a nontrivial exercise.
It contains two friction kernelssthe rotational kernel (ΓR) and
the translational kernel (ΓT). The details regarding the former
has been discussed in our earlier studies17,18 and here we give
only the bare essentials.
(i) Rotational Friction, ΓR(k,z). We calculate the rotational

friction, ΓR(k,z) by using directly the experimental results on
dielectric relaxation and far infrared line shape measurements
in water. The relation which connectsΓR(k,z) to the dielectric
relaxation through the frequency dependent dielectric function,
ε(z), is as follows

where 3Y is the polarity parameter of the solvent with dipole-
momentµ and is given as 3Y ) (4π/3)âµ2F0.â ) (kBT)-1. ε0
andn2 are static and optical dielectric constants of the solvent,
respectively. In the present calculations,ΓR(k,z) for water has
been obtained using the above relation in the following way.
The frequency dependent dielectric function,ε(z) in the low
frequency regime is described by two consecutive, well-
separated Debye dispersions. The dielectric dispersions in-
volved in Debye relaxations are given in Table 2a. At high
frequency regime,ε(z) derives major contributions from the

(28) Berkowitz, M.; Wan, W.J. Chem. Phys. 1987, 86, 376.

(29) Balucani, U.; Zoppi, M.Dynamics of the Liquid State; Clarendon
Press: Oxford, 1994; and references therein.

(30) Bhattacharyya, S.; Bagchi, B.J. Chem. Phys. 1997, 106, 1757.

Fid(r ,t) ) kBTnion(r ,t)3∫dr ′dΩ′cid(r ,r ′,Ω′) δF(r ′,Ω′,t) (9)

Ssolvent
10 (k,t) ) N

4π3Y[1- 1
εL(k)]£-1[z+ ∑(k,z)]-1 (10)

∑(k,z) )

[1-
F0
4π
c(110;k)] [ 2kBT

I[z+ ΓR(k,z)]
+

k2kBT

mσ2[z+ ΓT(k,z)]] (11)

kBT

I[z+ ΓR(k) 0,z)]
)
(ε0 - 1)

3Yn2
z[ε(z) - n2]

ε0 - ε(z)
(12)
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librational and intermolecular vibrational motions of the hy-
drogen bonded network. These high frequency data are
tabulated in Table 2b.
(ii) Solvent Translational Friction, ΓT(k,z). It has been

found that the solvent translational motion can enhance the rate
of solvation and the mobility of an ion by accelerating the rate
of the solvent polarization relaxation. In the case of ionic
mobility the most important and effective translational modes
are those of nearest neighbor solvent molecules. Naturally, the
solvent translational motion near the ion will be rather different

from those in the bulk since the strong ionic-dipole interaction
quenches the free translational motion of the nearest neighbors.
This is an example of the back reaction of the solute on the
solvent which leads to an interesting dynamic cooperativity
which is intrinsically nonlinear in nature. We have calculated
the translational diffusion coefficient of the nearest neighbor
solvent molecules through a nonlinear equation which couples
the solvent translational mode with that of the ion.18
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