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Abstract: Limiting ionic conductance/) of rigid symmetrical unipositive ions in aqueous solution shows a strong
temperature dependence. For examplgmore than doubles when the temperature is increased from 283 to 318
K. A marked variation also occurs when the solvent is changed from ordinary wa®) (el heavy water (BD).

In addition,A¢ shows a nonmonotonic size dependence with a skewed maximum rfeaAisough these important
results have been known for a long time, no satisfactory theoretical explanation exists for these results. In this
article we present a simple molecular theory which provides a nearly quantitative explanation in terms of microscopic
structure and dynamics of the solvent. A notable feature of this theory is that it does not invoke any nonquantifiable
models involvingsolvent-bergor clatherates We find the strong temperature dependencé\gto arise from a

rather large number of microscopic factors, each providing a small but nontrivial contribution, but all acting surprisingly
in the same direction. This work, we believe, provides, for the first time, a satisfactory explanation of both the
anomalous size and temperature dependenciés of unipositive ions in molecular terms. The marked change in

Ao as the solvent is changed from®ito D,O is found to arise partly from a change in the dielectric relaxation and
partly from a change in the effective interaction of the ion with the solvent.

I. Introduction Clearly, this ultrafast response will have an important effect on
o . _ ionic conductance as well.
Limiting ionic conductance/o) of small rigid symmetrical In this article, we are concerned with the limiting ionic

ions in common dipolar solvents is an important entity of the conguctanceo) in agqueous solution only. The value of the
liquid phase chemistry.” Despite its importance, our under-  |imjting jonic conductanceio, is determined by the interaction
standing of the factors that determirg is still poor. The = petween the ion and the solvent molecules and the relative
complexity of the problem drew the attention of great scientists dynamics of the solutesolvent system A, itself shows several
like Born, Debye, and Onsager, but even then many of the basicinteresting, even anomalous, behaviors which are nontrivial to
aspects of the problem are not yet well-understood. The reasongypiain. In the following we list some of these.

for the lack of progress is many fold. Not only are the 1. The limiting ionic conductance)o, shows a maximum
interac_tions involved Iong-ranged but also the structure and the ynen plotted against the inverse of the crystallographic ionic
dynamics of the solvents involved are complex and WM®It0 r54iys 11 This particular feature is shown in Figure 1 which

largely unknown. For example, it has been discovered only 554 gepicts the complete breakdown of Stokes’ law for small
recently that water, acetonitrile, and methanall possess an s Jike Li* and N4.

; X o
ultrafast polar solvent response in 5000 fs time scalé: 2. Ao shows a strong temperature dependence. For monova-
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Figure 1. The values of th&imiting ionic conductiity (Ag) of rigid,
monopositive ions in water (D) at 298 K are plotted as a function of
the inverse of the crystallographic ionic radiqgi. The experimental
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overestimates the dielectric friction by a factor ef8for small

ions like Na and Li*. This is shown in Figure 1. In a different
continuum approack;6Hubbard and Onsager ¢-D) derived

an expression for the total friction acting on the ion by
generalizing the NavierStokes equations for hydrodynamic
flow to include the polarization relaxation of the solvent in the
vicinity of the moving ion. The resulting hydrodynamic
equations were then solved with the constraint of invariance of
the energy dissipation with respect to rigid body kinematic
transformation (rotation and translation). The Hubb&toh-
sager continuum electrohydrodynamic approach constitutes a
beautiful treatment of macrodynamics, and it predicts the
mobility of large ions correctly. However, it severely under-
estimates the value @hr and thus fails to provide a quantitative
description of the ion transport mechanism. This is also shown
in Figure 1.

In a complete breakaway from the continuum models,
Wolynes proposed a theory to obtain the dielectric frictdys,
from the force-force time correlation functionthe force on
the ion was obtained from microscopic quantities, such as the
radial distribution functio’? The theory was found to be rather
successful in describing many aspects of the ionic mobilities in
water and acetonitril&¢ Several limitations of this approach

results are denoted by the solid circles. The solid line represents the\yere removed in a subsegeunt theory which pays proper

predictions of the Stokes’ law, the large-dashed line the Hubbard
Onsager theory, and the small dashed line the theory of Zwanzig (with
slip boundary condition). Note that the Stokes’ law is valid for
tetraalkylammonium ion€;—C, whereC, = (CiHzan+1)4aNT, n being

1, 2,3 or4.

orientationalstructure breakingof the solvent by the io#?
However, this approach fails completely to provide a coherent
quantitative description ofAo. The second approach was

attention to the various static and dynamic aspects of the ion
solvent composite systeht!® A notable feature of the extended
theory is the self-consistent treatment of the self-motion of the
ion and the biphasic polar solvent response. The results were
found to be in satisfactory agreement with all the known results
not only for water and acetonitrifébut also for monohydroxy
alcohols!® Most notably, the nonmonotonic dependenceé\ef

on ;> was correctly reproduced for all these solvents. How-

initiated by Borrt! who suggested that because of the increased ever, no theoretical studies on temperature dependence or solvent

dissipation of momentum due to the long range-isnlvent
interactions, the ion experiences an additional friction over and
above the prediction of Stokes’ law. The friction acting on the
moving ion can, therefore, be written as a sum of two
contributions

é = ébare_’_ gDF (1)

wherepareis the friction due to short range nonpolar interac-
tions, whereagpr is the dielectric friction originating from the
long-range polar interactions. Conventionall§pare is ap-
proximated by the Stokes’ relation with a proper boundary

condition. The main emphasis of this approach is the calculation

of the dielectric friction,Cpr. This is, of course, nontrivial.
Initially, ¢pr was obtained by continuum models, but more
recently a microscopic approach has been initiaéd. In the
following we first briefly describe the main results of the
continuum models.

The first consistent electrohydrodynamic calculation of
dielectric friction was presented by ZwanZip.It leads to a
simple expression fafpr in terms of the static dielectric constant
(e0) and the Debye relaxation timey). The resulting expres-
sion can explain the nonmonotonic size dependenciydiut
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Ueno, M. et al.J. Chem Phys 1996 105, 3662.
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(15) Hubbard, J. B.; Onsager, . Chem Phys 1977, 67, 4850.

(16) Hubbard, J. B1978 68, 1649. Hubbard, J. B.; Wolynes, P. G. In
The Chemical Physics of Sation; part C Dogonadze, R. et al., Eds.;
Elsevier: New York, 1988; Chapter 1, p 33.

isotope effect on limiting ionic conductivity has been carried

out. As already mentioned, the recently discovered ultrafast
component in solvation dynamics is expected to play an
important role in determining the solvent isotope effect and the
temperature and pressure dependenciesgof

Nevertheless, the strong temperature dependenck, of
water is certainly paradoxical. On increasing the temperature
from 283 to 318 K, the density of water decreases by only about
1%, the static dielectric constant by about 15%, and the Debye
relaxation timerp and the solvent viscosity both by about 56%6.
On the other handA for Li™ increases by 120%, from 26.37
at 283 K to 58.02 at 318 K. The same trend of increase is
observed not only for Cs Na", and Lit but also for the
relatively large tetraalkylammonium io#%.As this large change
cannot be easily accounted for within the existing continuum
model theories, explanations were offered in the past by
invoking the partial breakdown of the hydrogen bonded network
at high temperatures and formation of solvent-berg at low
temperature$? Not only that such pictures are difficult (if not
impossible) to quantify, but there is no experimental evidence
of significant structural change between, for example, 283 and
298 K whereA changes by about 50%. Thus, explanation of
the temperature coefficient ofy has remained largely unsolved.

In contrast to the temperature dependence, the solvent isotope
effect on limiting ionic conductivity is less anomalotfs.For
Na*, the change i\ is about 20% when the solvent is changed
from H,O to D,O. This is comparable to the viscosity change
of the liquid and, in principle, could be explained by

(17) Biswas, R.; Roy, S.; Bagchi, Bhys Rev. Lett 1995 75, 1098.

(18) Biswas, R.; Bagchi, BJ. Chem Phys 1997 106, 5587.

(19) CRC Handbook of Chemistry and Physié3th ed.; Weast, CRC
Press: 19761977.
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hydrodynamics-via the continuum modelsexcept that they
all give a completely wrong magnitude of.

The molecular theory presented here describes the ion
transport in terms of the iepsolvent interaction, the solute-
modified solvent-structure around the ion, the orientational
solvent static correlations, and the inherent dynamics of the
medium. The effect of the motion of the ion on its own
conductivity has also been taken into account through a self-
consistent calculation. The present microscopic theory is shown
to provide a good description for both the temperature depen-
dence ofAo and the solvent isotope effects on limiting ionic

Biswas and Bagchi

Table 1. Solvent Static Parameters at Three Different
Temperatures

solvent temp (K) diameter (&) u (D) p (gmicc) 1o (cp)
H,O 283 2.8 1.850 0.9997 1.3070
H.0O 298 2.8 1.850 0.9970 0.8904
H,O 318 2.8 1.850 0.9902 0.5960
D,0O 298 2.8 1.855 1.1045 1.0970

The dielectric frictionSpr, is now calculated from the foree
force time correlation function using Kirkwood's forméfa
which in the present case is given by

conductivity. The strong temperature dependence is seen to

arise from a collection of several small microscopic effects, all

acting in the same direction in a concerted fashion. These
effects include a change in the ion-dipole direct pair correlation
function and in the dynamics of the solvent. The theory also
provides a fairly satisfactory description of the solvent isotope

effect.

The organization of the rest of the paper is as follows. In
the next section we briefly describe the molecular theory. In
section Il we present the calculational details of the ion-dipole
direct correlation function. The same for the other necessary
guantities is given in the Appendix Il. We present numerical
results of the temperature dependence of the limiting ionic
conductivity in the section IV. Section V contains the results
on the solvent isotope effect. We conclude the paper with a
brief discussion in section VI.

Il. The Molecular Theory

Cor = 5o O FlOFFi) @

whereFiq(t) is the force acting on the ion due to the ion-dipole
interaction only. As usuakg is the Boltzmann constant arfid

is the temperature in degree Kelvinll...Ostands for the
ensemble averaging. The final expressiondgyis given by’

Eor(d =

2K Tpg oo

a p;) , dte™
3(27)

kKG9 Son(kit) Soventkit) (3)

where cildo(k) is the Fourier transform of the longitudinal

component of the static ion-dipole direct correlation function.
Soven(kt) is the longitudinal component of therientational
dynamic structure factor of the pure solvent witas the wave-
vector conjugate to the distance veatorWhile cig(K) describes

the effective interaction between the ion and the dipolar solvent

The microscopic theory presented here is based on themoleculesSio (k) describes the pure solvent dynamics. In

following simple picture. As an ion moves in the liquid, it
experiences fluctuating forces from two different sources. First,
there is the usual force from the short range, primarily repulsive,
non-polar interaction with the surrounding solvent molecules.
The friction originating from this part, as already mentioned, is
termed as bare frictionfad. This is calculated from the
solvent viscosity#g) and the crystallographic radius of the ion,
(rion) by using the Stokes’ law as followare = 4torion. This

is clearly an approximation since the hydrodynamics cannot be
valid for a ion which is smaller in size than the solvent.
However, for small iongpare is generally much smaller than
Zor, and, therefore, the error made is not signific&ntThe
second part of the fluctuating force originates from the long-
range ion-dipole interaction. This gives rise to the dielectric
friction, {pr. We neglect the cross correlations among the short
range, repulsive and long range attractive ion-dipole interactions.
This is also an approximation first proposed by Woly@desnd
used extensively in their subsequent wotksDue to the long
range nature of the ion-dipole interaction, this polar force can
be obtained from the well-known time dependent density
functional theoryt213 The latter provides an expression of the
effective potential on the ion in terms of the fluctuating space
and orientation dependent densithis expression is given in
the Appendix I. The force due to the polar interaction is

defining these correlation functions, the wavenunibigrtaken
parallel to thez axis. po is the average number density of the
solvent. Son(k,t) denotes the self dynamic structure factor of
the ion. Thez = 0 limit of eq 3 provides the macroscopic
friction. The details are available in refs 17 and—¥Bbrief
summary of derivation of eq 3 is given in the Appendix | for
the sake of completion.
Equation 3 is a nonlinear, microscopic expression for the

dielectric friction. It is nonlinear since it involvegpe(2) on
both the sides. Thus, it has to be solved self-consistently. This
equation has an interesting structure as it couples single particle
motion Son(k,t)) to the collective dynamics of the solvent
(Ssolventk;t)) via the ion-dipole direct correlation functiogif-
(K)). To obtainlpr (= Cpr(z= 0)) from eq 3, we need to specify
both S0en(k.t) andSon(k,t). The latter is assumed to be given
by

Son(k) = exp[-DP"kt] (@)
where the diffusion coefficient of the iorDY", itself is
determined by the total frictiod. As the motion of the ion
occurs on a time scale larger than the dynamics of the dipolar

solvent, eq 4 is sufficient for most purposes.
The determination of the orientational solvent dynamic

obtained from this potential. It should be stressed here that thestrycture factor is rather complex. It is determined by the static
present approach has been enormously successful in many areasyientational structure, the frequency dependent dielectric func-
of liquid state dynamic3}~** and is an effective way to treat  tjon ¢(2), and the translational and rotational diffusion coef-
the dynamics of a strongly correlated system like the presentficients, among others, of the dipolar liquid (here ordinary water
one. and heavy water). The solvent static parameters and the
dielectric relaxation data for both the liquids are summarized
(21) Kirkpatrick. T. R.Phys Rev. A 1985 32, 3130. Kirkpatrick, T. in Tables 3. The detai!s of the_met_hodolo_gy are _av_ailable
R.; Nieuwoudt, J. CPhys Rev. A 1986 33, 2651. Kirkpatrick, T. R. In  €lsewher&1"18 and we give a brief discussion on it in the

Proceedings of the International Conference on the Theory of the Structures Appendix Il. Finally note that the expression for the dielectric
of Noncrystalline SolidsAlder, D., Eds.; Bloomfield Hills, MI, 1985.
(22) Hohenberg, P. C.; Halperin, B.Rev. Mod. Phys 1977, 49, 435.

(20) Kirkpatrick, T. R.; Wolynes, P. GPhys Rev. A 1987, 35, 3072.

(23) Kirkwood, J. G.J. Chem Phys 1946 14, 180.
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Table 2 (o — 1)ze
(a) The Dielectric Relaxation Parameters oA Pma&r) B 4t eorz (6)
T (K) €1 T1 (pS) €2 2 (pS) €3
283 83.83 12.145 6.18 1.498 4.49 wheree denotes the electronic charge anthe valency of the
298 78.3 8.32 6.18 1.02 4.49 ion. We have calculateBmic(r)/Pmadr) using the two mutually
318 71.51 5.538 6.18 0.683 4.49 exclusive conditions given in the paper by Chan et*aln
(b) Frequency and Dielectric Constants for the High Figure _2 we show the calculate_d variatio_n of the polarization
Frequency Librational Modés ratio with r (scaled by solvent diameter) in water for solute

solvent size ratio, 1. It is clear from the above figure (Figure
2) that the polarization density around an ion is oscillatory in
4.49 69.3 4.2 193 21 685 1.77  nature which is maximum at the contact. This is in contrast to

aThese data are well compiled in ref 9 = <o, the static dielectric the dielectric saturation theory which predicts a divergence in

constant of the solvent; = €., the infinite frequency dielectric constant ~ the local static dielectric constant and thus in the local
obtained by fitting the low frequency relaxation to a sum of two Debye polarization near the ion.
dispersions]® We have used the same high frequency dielectric

dispersion data and low frequency dispersions for all the three different v/ Numerical Results for Ao in Water: Temperature
temperatures except the temperature dependent

wooQem? 3 QemY) 5 Qsem?Y

Dependence
Table 3 In this section we present the numerical results on the
(a) Dielectric Relaxation Parameters of@® temperature dependent limiting ionic conductivitgg. We
solvent o 71 (pS) o calculate Ao by using the following well-knownNernst-
Einsteinrelation
D,O 78.3 10.37 4.8
(b) Frequency and Dielectric Constants for the High _ ZFDY"

Frequency Librational Modes A= RT (7
solvent n? Qi(cm?Y) ni QCm?) nk Qcm?d) nd
DO 48 64.0 4.2 184 21 505 1.77

whereF is the amount of electricity transported by one gram-
equivalent of the conducting ion, arillis the universal gas

2 These data are also well compiled in ref 9¢; = €., 0 = 2, the constant. D' is the translational diffusion coefficient of the
optical dielectric constant of the solvent. ion and is calculated from the Einstein relation
friction (eq 3) has essentially the same structure as the solvation Dion — ke T
- ; ' = (8)
energy time correlation functior(t)) except that the former c

(eq 3) has auartic wavenumberk) dependence, while that of o
the latter has guadratic kdependence. Thus, the present theory where the total frictiort is evaluated from eq 1. Note that no

can be considered as a dynamic solvent berg midel. adjustable parameter is used at any stage of the calculation.
The calculated limiting ionic conductivity at 283 K is shown

in Figure 3 where\, is plotted as a function of the inverse of
the crystallographic ionic radiu%ﬁ. The available experi-
mental result® are also shown in the same figure (Figure 3).
The comparison clearly indicates a fair agreement between the
theoretical predictions and the experimental results. In par-
ticular, the nonmonotonic size dependence is correctly repro-
: . . . : duced by the present molecular theory. This is indeed satis-
describes the coupllng of the solute ion with the distorted solvent factory if one considers the complex nature of the solvent and
structure around the ion. the approximations involved. There are, however, still some
We obtain the ion-dipole direct correlation functiam(k), minor discrepancies. The theory predicts a peak valug\for
by Fourier transforming the expression of microscopic polariza- which is smaller than the experimental value by about 10%.
tion (Pmic(r)) given by Chan et a&* An interesting aspect of  Moreover, the theory predicts a shift in the peak position where
this expression is that it predicts a region of negative values of the theoretical peak ihg corresponds t&*, while that in the
Pmic(r) which indicates the alignment of the solvent dipole just experiment is for Cs. For Li*, the calculated\, is about 15%
outside the first solvation shell in a direction opposite to that greater than that of the experimental results.

lll. Determination of the Intermolecular Coupling
between the Solute lon and the Dipolar Solvent
Molecules, cig(k)

In this section, we describe the calculation of the wavenumber
(k) dependent ion-dipole direct correlation functiog(k), which

of those as the nearest neighb#tsThe expression for the ratio In Figure 4 we present the calculated limiting ionic conduc-
of the microscopic polarizationPyic(r) to the macroscopic tivity, for water at 298 K. The relevant experimental resiflts
polarization,Pmadr) is given as follow3* are again shown in the same figure (Figure 4). The agreement
here is excellent. In Figure 5 we compare the theoretical
P_ () dF(r) predictions on limiting ionic conductivity with those from the
=1 —r x ——=+ F(r) (5) experiments by plotting\, againstr - at 318 K. The relevant
Pmadl) dr experimental result8are also shown in the same figure (Figure

5). Note that the theory predicts the peak valueAgfquite
where F(r) is a dimensionless quantity and appears as a Successfully but again fails to describe the experimental results
correction factor to the macroscopic polarizatidghe latter is for Na" and Li* quantitatively.

given by the following expressiéh The fair agreement between the theoretical predictions and
the experimental results indicates that the present theory can
(24) Chan, D. Y. C.; Mitchel, D. J.; Ninham, B. W.Chem Phys 1979 capture essentially all the static and dynamic aspects of the

70, 2946. solute-solvent system correctly at different temperatures. We
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Figure 5. The values of thdimiting ionic conductiity (Ao) of rigid,
monopositive ions are plotted as a function of the inverse crystal-
lographic ionic radius in water (@) at 318 K. The solid line represents
the predictions of the present theory, and the solid circles denote the
experimental results.

Figure 3. The values of thdimiting ionic conductiity (Ao) of rigid,
monopositive ions are plotted as a function of the inverse ionic radius,
rgﬁ in water (HO) at 283 K. The solid line represents the predictions
of the present microscopic theory. The solid circles denote the
experimental results.

would like to emphasize again that this agreement has beenparameters, each contributing a small effect with the change in
achieved without the use of any adjustable parameter. the temperature. These effects act in a concerted fashion to a
The reasons for the remaining discrepancies are not clear. Itsingle direction-either to decrease or increase the limiting ionic
is likely that the MSA model used to obtain the static pair conductivity depending upon the direction in which the tem-
correlations does not describe the real solvent accurately.perature is changed. For example, the increase in the temper-
Another reason may be the use of the dielectric relaxation dataature from 283 to 318 K givesa10% reduction in the polarity
which at 283 and at 318 K were obtained from those at 298 K (3Y) parameter. This translates into the similar reduction in
by scaling the relaxation times linearly with the viscosity. Any the orientational static correlations and ion-dipole direct cor-
slight incompatibility in these data will be magnified in the relation functions. The viscosity of the solvent also reduced
calculation ofAo. This is more so for the relatively small ions by ~50%. This reduction in the solvent viscosity changes
because the small ion couples with the dynamic response ofin two ways—changing both the bare friction and the dielectric
the solvent more strongly compared to the larger ions. friction. The reduced viscosity also decreases the Debye
Let us now comment on the physical origin of the strong relaxation times which have been used to evaluate the dynamic
temperature dependence &f. The present theory takes into  solvent structure factorslsglven(k,z) through the calculation of
account the temperature effect through various molecular 3 (k,z). In order to understand the dynamics of solvent response,
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0 . ionic conductivity in electrolyte solution. The values of the limiting
decay.Ofi‘)'VEf‘(k’t) at .318 ar)d 283 K, respec_nvely. _Note that the ionic conductivity, A, are plotted as a function of the inverse of the
numerical results obtained witv = 6.3 whereo is the diameter of a

. crystallographic ionic radius imeay water (D;O) at 298 K. The
water molecgle. The wavenumbé«) @nd the .tlmeto are scaled by prediction of the present molecular theory is represented by the solid
the solvent diametew] and the timer, respectively. The parameters

used for this calculation are given in Tables 1 and 2 1 x 1022, line while those from experiments are shown by the solid circles.

we plot in Figure 6 the calculated dynamic solvent structure VI. Conclusion

factor (normalized)SLy (K1), for two different temperatures. Let us first summarize the main results of this paper. We
Note S0, .(k.t) is obtained by numerically Laplace inverting have presented a microscopic calculation which explains the
ig,ven(k,z), and we show the results for intermediate wave- anomalous temperature dependence of the limiting conductivity
number only. Itis clear from the above figure that the response Of unipositive ions in aqueous solutions. The strong temperature
function at high temperature decays more rapidly than that at dependence is shown to arise from a collection of small effects
the low temperature. This, in turn, produces less dielectric all acting in the same direction. Thus, one need not invoke
friction at the high temperature. any unquantifiable physical concepts like the formation or
It is interesting to see how so many changes act in the samebreaking of solvent-berg to explain the experimental results.
direction. Thus, we are in a position now to understand the The theory can also explain the significant solvent isotope effect

anomalous temperature coefficient of the limiting ionic con- Which has been known for a long time but was hitherto
ductance in aqueous electrolyte solutions. explained quantitatively. The nonmonotonic size dependence

of limiting ionic conductivity at various temperature has also
V. Numerical Results for Ao in Heavy Water D,O: been correctly described in terms of the dielectric friction.
Solvent Isotope Effect An important aspect of the present study is the systematic
incorporation of the ultrafast polar solvent response in calculat-

Here we present the theoretical results on ionic conductivity ing the ionic mobilities at all temperatures reported here. In a
in heavy water (DO) at 298 K. The necessary static parameters microscopic theory ofpolar solvation dynamics developed
and dielectric relaxation data needed for the calculation®f  earlief it has been shown that in the theory the ultrafast polar
in D2O are given in Tables 1 and 3. solvent response comes entirely from the dynamic response

The calculated results for the limiting ionic conductivityg, function 2(k,z2) which is determined in turn by the fast
in heavy water (BO) at 298 K are shown in Figure 7. The components dielectric dispersion of the pure solvent. We use
available experimental resuléfor D,O are also shown in the  the samey (k,2) in the present theory to calculate the limiting
same figure (Figure 7). The theoretical results are seen to beionic conductivities of various monopositive ions. An interest-
again in good agreement with those from the experimental ones.ing prediction is that if we incorporate only the largest Debye
Note that the theory can successfully predict the peak value of relaxation time, then we find about 100% reduction of the value
Ao in D;O. The experimental observation that the solvent of the limiting ionic conductivity obtained using the full
isotope effect reduces the mobility by about 20% is correctly dielectric relaxation data of the solveft.
reproduced here. It is important to note that at room temperature the experi-

In view of the present isotope effect, it is interesting to recall mental results on limiting ionic conductivities of uninegative
the significant isotope effect observed in electron mobffity.  halide ions constitute a curve with a maximum which is different
The latter is, of course, a more difficult problem as a fully from that of the cations when plotted as a function of the
quantum mechanical treatment is required to understand thecrystallographic ionic radius. This indicates that the interaction
nature of the solvent isotope effect on electron mobfity. between a solvent molecule and an anion is different and
asymmetric from that of the catiersolvent system. Recent

(25) Schwartz, B. J.; Rossky, P.J.Chem Phys 1996 105, 6997.
(26) Raineri, F. O.; Resat, H.; Friedman, H.J.Chem Phys 1992 96, (27) Lee, S. H.; Rasaiah, J. €.Chem Phys 1994 101, 6964. J. Phys
3058. Chem 1996 100, 1420.
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computer simulation studies by Lee and RasHiafwith
improved interaction potential) have quantitatively reproduced

the above experimental trend. The present theory, however,

cannot explain the distinct maximum observed for the halide
ions. This is because the present theory uses thesolvent
direct correlation functions obtained from the MSA model which
is insensitve to the sign of the charge. The present theory, in
principle, can be extended to explain the differences by using

the proper charge representation of the solvent molecules. Tha K
is, one needs to abandon the point dipole representation of the

solvent molecules. While this is certainly worthwhile, the
procedure would involve extensive numerical work.

The theory presented here is based on a simple idea, although

Biswas and Bagchi

be obtained from the mode coupling theory (MCT) which does
not invoke Kirkwood’s formula at any stag23° Thus, exactly

the same expression for friction can be derived by using these
two alternate routes. Our understanding is that so long as one
is calculating the friction, a properly defined random force gives
the correct result.

Appendix Il

The orientational solvent dynamic structure factfl,q
,t) has the following form

N 1
SlSglven(klt) = F‘?’\({l T T

-1 -1
o £{z+ X(k,z)] (20)

its implementation requires the consideration of a rather large yhere £1 stands for Laplace inversion. Y3is the polarity
number of factors. One needs not only a detailed knowledge parameter of the solvent and can be calculated from dipole-

of the ion—dipole and dipole-dipole pair correlation functions

momentu andpo of the solvent using the following relatiorY3

of the solution but also a detailed description of the dielectric — (47/3ksT)upo. N represents the total number of solvent
dispersion of the pure solvent. Even after these are obtained,molecules present in the system.(K) is the longitudinal (110)

one needs to calculate the rotational and the translational component of the wavenumbég) lependent dielectric function.
generalized frictions which are both frequency and wavenumber Tpjs is calculated from MSA corrected bothkat> « andk —

dependent. However, all the functions involved are well-
behaved, and the self-consistent calculatiogg is straight-
forward. In fact, given the complexity of the problem, it is
difficult to imagine that a simpler theory than the present one
can be successful.

We now comment on the validity of the separation of the
total friction into two parts-namely, the bare friction) and
the dielectric friction {pF). This separation may not be a serious
approximation. It has been discussed eddithat so long as
the bare (nonpolar) part contains only the isotropic part of the
interaction potential between the ion and the solvent dipoles,
such a separation is internally consistent within the linearized
equilibrium theory of liquids. This has also been observed in
the simulation studies of Berkowitz and W#&h However, this

0 limits by using the XRISM results of Raineri, Resat, and
Friedmare® 3 (k,2) is the dynamic response function of the
solvent which is a measure of the rate of orientational solvent
polarization density relaxation and can be evaluated using the
following expression

S (ka) =

Po

AT Kk T
[z+Trkd]  me’{z+ T'y(k2)]

11)

wherem, o, and| characterize the mass, diameter, and the
average moment of inertia of each solvent molecule, respec-

separation becomes questionable if nonlinear effects are im-tively. ¢(110k) is the (110) component of the two particle direct

portant, as discussed in ref 13.

correlation function of the solvent in the wave-vectoy ¢pace.

The theory presented here can be extended to understand th&r(k2) and I't(k.z) are the rotational and the translational

concentration dependence of ionic conductivity in electrolytes
of rigid ions like NaCl. Work in this direction is under progress.
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Appendix |

The force which is responsible for the dielectric friction is
long range in nature since it originates from the coupling of
the ionic field to the solvent polarization mode. The density
functional theory provides the following expression for the force
density on the ion

Fig(r,t) = kgTng(r ,t)vfdr'd!!'cid(r,r',ﬂ') Op(r', Q' 1)y (9)

where nign(r ,t) is the number density of the iodo(r,Q,t) is

the fluctuation in the positiorr}, orientation ), and time )
dependent number densityg) of the dipolar solvent, andg-
(r,r',Q) is the ion-dipole direct pair correlation function (DCF).

v is the spatial gradient operator. Next, the density and the
direct correlation function are expanded in the spherical
harmonics. We then use the standard Gaussian decouplin
approximation to obtain the microscopic expression for the
frequency dependent dielectric frictiofpr as given in eq 3.
The same expression for the dielectric friction (eq 3) can also

(28) Berkowitz, M.; Wan, W.J. Chem Phys 1987, 86, 376.

(i) Rotational Friction, T'r(k,2). We calculate the rotational
friction, I'r(k,2) by using directly the experimental results on
dielectric relaxation and far infrared line shape measurements
in water. The relation which connedi(k,2) to the dielectric
relaxation through the frequency dependent dielectric function,

€(2), is as follows
(€0 = 1) Ze(2) — nf

ke T

I[z+ Tr(k=0,2)] Yt € €2
where ¥ is the polarity parameter of the solvent with dipole-
momentu and is given as8= (47/3)Bu?00.f = (ksT)™L. €o
andn? are static and optical dielectric constants of the solvent,
respectively. In the present calculatio(k,2) for water has
been obtained using the above relation in the following way.
The frequency dependent dielectric functie(g) in the low
frequency regime is described by two consecutive, well-
separated Debye dispersions. The dielectric dispersions in-

12)

Yolved in Debye relaxations are given in Table 2a. At high

frequency regimeg(2) derives major contributions from the

(29) Balucani, U.; Zoppi, MDynamics of the Liquid Stat€larendon
Press: Oxford, 1994; and references therein.
(30) Bhattacharyya, S.; Bagchi, B. Chem Phys 1997 106, 1757.
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librational and intermolecular vibrational motions of the hy- from those in the bulk since the strong ionidipole interaction
drogen bonded network. These high frequency data arequenches the free translational motion of the nearest neighbors.
tabulated in Table 2b. This is an example of the back reaction of the solute on the
(ii) Solvent Translational Friction, I't(k,2). It has been  solvent which leads to an interesting dynamic cooperativity
found that the solvent translational motion can enhance the rateynich is intrinsically nonlinear in nature. We have calculated
of solvation and the mobility of an ion by accelerating the rate he translational diffusion coefficient of the nearest neighbor

of tt?'?t s:)rllvent pto!arlzattlont relgxaftflont._ Int thelc?se |°f |og|c solvent molecules through a nonlinear equation which couples
mobiiity the most important and eflective transiational modes o ¢4 ent translational mode with that of the i8n.

are those of nearest neighbor solvent molecules. Naturally, the
solvent translational motion near the ion will be rather different JA9701180



